Storage Tank Volumes

Tank Volume, m³/metre (Rectangular Tanks Only)

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>Width (m)</th>
<th>3.05</th>
<th>3.66</th>
<th>4.27</th>
<th>4.88</th>
<th>5.49</th>
<th>6.10</th>
<th>7.62</th>
<th>9.15</th>
<th>10.67</th>
<th>12.19</th>
<th>13.72</th>
<th>15.24</th>
<th>16.76</th>
<th>18.29</th>
<th>19.81</th>
<th>21.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.83</td>
<td></td>
<td>5.58</td>
<td>6.70</td>
<td>7.81</td>
<td>8.93</td>
<td>10.05</td>
<td>11.16</td>
<td>13.94</td>
<td>16.73</td>
<td>19.53</td>
<td>22.31</td>
<td>25.11</td>
<td>27.89</td>
<td>30.67</td>
<td>33.47</td>
<td>36.25</td>
<td>38.85</td>
</tr>
<tr>
<td>2.13</td>
<td></td>
<td>6.50</td>
<td>7.80</td>
<td>9.10</td>
<td>10.39</td>
<td>11.69</td>
<td>12.99</td>
<td>16.23</td>
<td>19.47</td>
<td>22.73</td>
<td>25.96</td>
<td>29.22</td>
<td>32.46</td>
<td>35.70</td>
<td>38.96</td>
<td>42.20</td>
<td>45.22</td>
</tr>
<tr>
<td>2.44</td>
<td></td>
<td>7.44</td>
<td>8.93</td>
<td>10.42</td>
<td>11.91</td>
<td>13.40</td>
<td>14.88</td>
<td>18.59</td>
<td>22.30</td>
<td>26.03</td>
<td>29.74</td>
<td>33.48</td>
<td>37.19</td>
<td>40.89</td>
<td>44.63</td>
<td>48.34</td>
<td>51.80</td>
</tr>
<tr>
<td>2.74</td>
<td></td>
<td>8.36</td>
<td>10.03</td>
<td>11.70</td>
<td>13.37</td>
<td>15.04</td>
<td>16.71</td>
<td>20.88</td>
<td>25.04</td>
<td>29.24</td>
<td>33.40</td>
<td>37.59</td>
<td>41.76</td>
<td>45.92</td>
<td>50.11</td>
<td>54.28</td>
<td>58.17</td>
</tr>
<tr>
<td>3.05</td>
<td></td>
<td>9.30</td>
<td>11.16</td>
<td>13.05</td>
<td>14.88</td>
<td>17.74</td>
<td>18.61</td>
<td>23.24</td>
<td>27.88</td>
<td>32.54</td>
<td>37.18</td>
<td>41.85</td>
<td>46.48</td>
<td>51.12</td>
<td>55.78</td>
<td>60.42</td>
<td>64.75</td>
</tr>
</tbody>
</table>

Tank Volume Formulas:

Capacity, volume and displacement calculations use simple volumetric relationships for rectangles, cylinders, concentric cylinders and other shapes with the appropriate unit conversion factors.

Tanks on rigs can be a variety of shapes, but most are either rectangular or cylindrical. Three shapes of tanks are covered here:

1. Rectangular
2. Cylindrical, vertical
3. Cylindrical, horizontal

Rectangular Tank:

Mud tanks are usually rectangular with parallel sides and ends that are perpendicular to the bottom.

For a typical rectangular tank, the capacity can be calculated from the height, width and length.

Where:

\[
\text{Tank Capacity} = V_{tank} \\
\text{Tank Length} = L \\
\text{Tank Width} = W \\
\text{Tank Height} = H
\]

The general equation to calculate the capacity of a rectangular vessel is:

\[
\text{Volume} = \text{Length} \times \text{Width} \times \text{Height}
\]

This formula is valid for both English and Metric units.

Therefore, the capacity of a rectangular pit, using metres, is calculated by:

\[
V_{tank} (m^3) = L (m) \times W (m) \times H (m)
\]
Vertical Cylindrical Tank:

Cylindrical tanks mounted in a vertical position are normally used for liquid mud and/or dry bulk Barite storage.

Where:

- \(V_{\text{Cyl}} \) = Capacity of the Cylindrical Tank
- \(D \) = Diameter of Cylinder
- \(H \) = Height of Cylinder
- \(M \) = Material Level Height
- \(\pi \) = 3.1416

If the diameter is not known, measure the circumference and divide by 3.1416

\[
D = \frac{\text{Tank Circumference}}{\pi} = \frac{\text{Tank Circumference}}{3.1416}
\]

The general formula to calculate the capacity for a vertical cylinder tank is:

\[
V_{\text{Cyl}} (m^3) = \frac{\pi \times D^2 (m) \times H (m)}{4} = \frac{3.1416 \times D^2 (m) \times H (m)}{4} = \frac{D^2 (m) \times H (m)}{1.273}
\]

The actual mud volume \((V_{\text{mud}}) \) of a vertical cylinder tank is calculated using the mud/material level height \((M) \) by:

\[
V_{\text{mud}} (m^3) = \frac{\pi \times D^2 \times M}{4} = \frac{D^2 \times M}{1.273}
\]
Horizontal Cylindrical Tank:

Cylindrical tanks mounted in a horizontal position are normally used primarily for storage of diesel fuel, other liquids and/or Barite. The vertical capacity and volume of a horizontal cylindrical tank varies with the horizontal cross-section area, and is not a linear function of height. Charts and tabular methods are available to calculate the capacity and volume of horizontal cylindrical tanks.

Where:

\[V_{Cyl} = \text{Capacity of the Cylindrical Tank} \]

\[D = \text{Diameter of Cylinder} \]

\[L = \text{Length of Cylinder} \]

\[M = \text{Mud or Material Height} \]

\[\pi = 3.1416 \]

\[
V_{Cyl} = \frac{L}{2} \left[(2M - D) \sqrt{MD - M^2} + \frac{D^2}{2} \sin^{-1}\left(\frac{2M-1}{D}\right) + \frac{\pi D^2}{4} \right]
\]

The result from \(\sin^{-1} \) must be in radians before being added to the other parts of the equation (2\(\pi \) radians = 360°). To convert from degrees, divide by 57.3 (degree/radian) to obtain radians.